In Asymptotic Statistics we study the asymptotic behaviour of (aspects of) statistical procedures. Here “asymptotic” means that we study limiting behaviour as the number of observations tends to infinity. A first important reason for doing this is that in many cases it is very hard, if not impossible to derive for instance exact distributions of test statistics for fixed sample sizes. Asymptotic results are often easier to obtain. These can then be used to construct tests, or confidence regions that approximately have the correct uncertainty level. Similarly, determining estimators or other procedures that are optimal in a specific sense, for instance in the sense of minimal mean squared error or variance, is often not possible if the number of observations is fixed. Using asymptotic results is it however in many cases possible to exhibit procedures that are asymptotically optimal.

In this course we begin by treating the mathematical machinery from probability theory that is necessary to formulate and prove the statements of asymptotic statistics. Important are the various notions of stochastic convergence and their relations, the law of large numbers and the central limit theorem (which the students are assumed to know), the multivariate normal distribution, and the so-called delta method. We will use these tools to study the asymptotic behaviour of statistical procedures.

It is assumed that students have at least successfully completed introductory courses on probability theory and statistics and courses on linear algebra and multivariate calculus. It is highly recommended to follow a course on measure theoretic probability.

Announcements

  • On 14/10 we first have one hour of discussion of the exercises as usual from 10:00-11:00. Then from 11:00-13:00 we have a general Q&A. In particular we will use this to discuss the midterm exam of last year you can find below.
  • On 21/10 there is no lecture, since many students have exams that week.
  • We continue as usual on 28/10.

Course information

  • Lecturer: Harry van Zanten
  • TA: Ivan Barta
  • Every week 2 hours of recorded lectures + 1 hour online Q&A about the exercises
  • Lecture notes: Aad van der Vaart’s lecture notes: can be downloaded here. Additional chapters on minimax lower bounds and high-dimensional models: here.
  • Recommended literature: Asymptotic Statistics, by A.W. van der Vaart, Cambridge University Press.
  • Exams: single final exam and a retake.

Online teaching

Due to the Covid crisis the entire course will be online this year. Every week the schedule is as follows:

  • Every week recorded lectures will be made available before the scheduled time slot (Wednesdays at 10:00). See the table below for links to the recordings. You will receive a password for the videos via email.
  • Starting from September 16th, there is a weekly an online exercise class via Zoom on Wednesdays, 10:00-11:00, discussing the exercises corresponding to the material of the week before (see the table below). You will receive a Zoom link via email.

Ivan’s notes about the exercises

Exam

  • To be announced

Retake

  • To be announced

Old exams

Slides

What we have done so far

LectureDateTopicMaterialExercisesRemarksVideo links
19/9introduction, convergenceslides+notes Sec. 1.1 up to and including Theorem 1.71.1, 1.2, 1.3(i), 1.4, 1.10, 1.15watch hour 1 from minute 13:45hour 1, hour 2
216/9convergencerest Sec. 1.1, Sec. 1.21.11, 1.12, 1.17, 1.28, 1.29, 1.321) Skip proof of Prohorov and Helly.
2) There is an error in 1.28. Try to correct it!
hour 1, hour 2
323/9multivariate normalSec. 2.1-2.42.1, 2.2, 2.5, 2.8, 2.13, 2.16, 2.17hour 1, hour 2
430/9chi square test and delta methodSec. 2.5, 3.12.22, 2.23(i), 3.1, 3.2, 3.3Skip Theorem 2.10.hour 1, hour 2
57/10delta methodSec. 3.2, 3.33.12, 3.18watch hour 1 from 6:25hour 1, hour 2
614/10live Q&A
728/10